LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION – **ALLIED**

THIRD SEMESTER – APRIL 2023

16/17/18UPH3AL01 - PHYSICS FOR CHEMISTRY - I

Date: 10-05-2023	Dept. No.	Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

	PART - A (10 x 2 = 20 M)	(Iarks)			
Q. No.	(
1	Draw the velocity versus time graph of a uniformly accelerated body.				
2	State the law of conservation of momentum.				
3	Distinguish between elastic and plastic materials.				
4	Give the unit and dimension of viscosity.				
5	State Boyle's law.				
6	Write ideal gas equation and explain its significance.				
7	What is unit cell of crystal lattice?				
8	Define Miller indices.				
9	What are inertial and non-inertial frames of reference?				
10	State the postulates of special theory of relativity.				
	$PART - B$ $(4 \times 7.5 = 30 \text{ M})$	Marks)			
	Answer any FOUR questions				
11	Determine the time period of oscillation of a liquid in an U-tube.				
12	Find the time period of oscillations of two springs connected in (a) series (b) parallel.				
13	a) Define surface tension and give its dimensional formula.	(2.5)			
!	b) Explain the molecular theory of surface tension.	(5)			
14	State and derive Bragg's law of X-ray diffraction.				
15	a) Define relativistic length contraction.	(2)			
	b) Derive Einstein's mass energy equation.	(5.5)			
16	Derive the expression to determine the excess pressure in a liquid drop.				
	PART – C $(4 \times 12.5 = 50 \text{ M})$	Marks)			
Answer any FOUR questions					
17	a) Define Poisson's ratio.	(2.5)			
• '	b) Derive the relation connecting the three moduli of elasticity.	(10)			
18	Derive an expression for the maximum height, time of flight and horizontal range of a body projected at an angle with the horizontal.	,			
19	a) What is an adiabatic process? Derive an equation for an adiabatic process.	(9)			
19	b) The volume of certain mass of gas at a pressure of 5×10^4 Pa is doubled adiabatically.	(2)			
	Calculate the final pressure of the gas. ($\gamma = 1.4$)	(3.5)			
20	Explain the rotating crystal method to determine the inter planar spacing of a crystal.	(3.5)			
21	Derive Lorentz transformation equations.				
22	Derive Poiseuille's formula for the rate of flow of liquid through a capillary tube.				
	\$\$\$\$\$\$\$				
	ΨΦΦΦΦΦ				